ORIGINAL PAPER

Wolfgang Förner · Hassan M. Badawi

Infrared and Raman spectra and vibrational analyses calculated with Moeller–Plesset perturbation theory of second order of nitrosoethylene and its chloro-derivatives

Received: 20 December 2004 / Accepted: 19 April 2005 / Published online: 27 July 2005 © Springer-Verlag 2005

Abstract The conformational and structural stabilities of nitrosoethylene $CH_2 = CH - N = O$, chloronitrosoethylene $CH_2 = CCl - N = O$, and Dichloronitrosoethylene $CCl_2 = CH - N = O$ were investigated by ab initio Moeller-Plesset perturbation theory of second order (MP2) calculations using the $6-311+G^{**}$ basis set to include electron correlation. From the calculations all three were predicted to exist predominantly in the planar trans structure (C = C and N = O bonds are *trans* to each other) with high trans-cis rotational barriers of about 9 kcal mol^{-1} as a result of pronounced conjugation between C = C and N = O bonds. The vibrational frequencies were computed for the three molecules, and also the d_1 and d_2 deuterated variants for the parent molecule at the MP2 level. Normal coordinate analyses were carried out and the potential energy distributions (PED), among the symmetry coordinates of the normal modes of the molecule were computed. Complete vibrational assignments were made on the basis of normal coordinate analyses for the molecules. The two chlorinated derivatives of nitrosoethylene were also investigated in the same way. As expected, we then find high Raman and infrared intensities in all modes that contain a high content of chlorine movements because vibrations of C-Cl bonds lead to large changes in polarizability, as well as to a large change in dipole moment. However, modes involving double bonds also have quite large intensities. An appreciable number of modes in these molecules are more or less pure symmetry coordinates.

Keywords Conformational equilibria · Normal coordinate analyses · Rotational barriers · Nitrosoethylene · Chlorinated nitrosoethylenes

W. Förner (⊠) · H. M. Badawi Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia E-mail: forner@kfupm.edu.sa

Introduction

The interesting properties of nitroso and nitro compounds [1-19] have attracted attention to investigate the structural and conformational stabilities of several nitroso R-N=O and nitro $R-NO_2$ compounds [20–22]. Nitroisocyanate $O_2N-N=C=O$, nitrosoisocyanate ON-N=C=O [20], nitroketene $O_2N-CH=C=O$ and nitrosoketene ON-CH = C = O [21] were predicted from theoretical calculations to exist exclusively in the planar conformations. The NO rotational barrier in nitrosoketene was calculated to be about 18 kcal mol^{-1} , and that of the NO₂ group in nitroketene to be about 10 kcal mol^{-1} [21]. These barriers were calculated to be about 6 and 2 kcal mol⁻¹ for nitrosoisocyanates and nitroisocyanates, respectively [20]. The significant differences between the aformentioned barriers were attributed to the decrease in the partial π -character of the N–N bond in the isocyanate as compared to that of the C–N bond in the ketene [20, 21].

Additionally, the stability of cyclopropene $c-C_3H_4$ and many of its reactive derivatives [23–29] especially perfluorocyclopropene $c-C_3F_4$ [25] has led to the investigation of the structural stability of 3-nitrosocyclopropane and 3-nitrocyclopropene [22]. From the calculations, 3-nitrosocyclopropene was predicted to exist predominantly in the *trans* conformation (the N=O bond is *trans* to the ring and eclipses a hydrogen of the ring) with a relatively high *trans-cis* rotational barrier of about 8 kcal mol⁻¹. The NO₂ rotational barrier in 3-nitrocyclopropene was predicted from the symmetric potential scan to be about 4.4 kcal mol⁻¹.

In the present study, the interest in organonitrogen compounds is continued and the structures of nitrosoethylene $CH_2 = CH-N = O$ together with its chlorinated derivatives were investigated. The energies of the molecules in their possible structures were optimized at the ab initio MP2 level using the $6-311+G^{**}$ basis set. The vibrational frequencies were computed for the molecules and, in the case of the parent molecule, also for its

Fig. 1 Atom numbering for *cis (upper)* and *trans (lower)* conformers of the different nitrosoethylene derivatives (X and Y denote H or Cl)

 d_1 -deuterated and d_2 -deuterated species. Then normal coordinate analyses were carried out to calculate the potential energy distributions (PED) among the symmetry coordinates of the normal modes for the stable forms of the molecules. The vibrational assignments of the normal modes were made on the basis of the calculated PED values and isotopic substitution and the results of the work are presented herein.

The molecules studied are of considerable interest because the investigations are expected to shed some light on the effects of an NO group bound to a vinyl group and also on those of chlorine substitution in such molecules. We expect that such effects can be explained on the basis of electronegativity changes, but this must be checked by actual calculations, the results of which are given herein.

Ab initio calculations

The GAUSSIAN 98 program [30], running on an IBM RS/6000 43P model 260 workstation, was used to carry out the MP2 calculations. The $6-311+G^{**}$ basis set was employed to optimize the structures and predict the energies and dipole moments of nitrosoethylene CH₂=CH-N=O [31] and its chlorinated derivatives in their stable structures (Fig. 1).

The optimized energies and structural parameters of the chlorinated molecules are listed in Tables 1 and 2.

Note that, for the case of the parent molecule, the structural data have already been published [31] and are not reproduced here, while the energies are all given for

Table 1 Structural parameters, total dipole moments and rotational constants calculated on the MP2/6–311+G** level for *trans* monochloro-nitrosoethylene (mono-ClNE, X = H, Y = Cl) and for *trans* dichloro-nitrosoethylene (di-ClNE, X = Cl, Y = H)

Parameter	Mono-ClNE	di-ClNE	Microwave ^a
Bond lengths (A	Å)		
$r(C_1 = C_2)$	1.344	1.355	1.335 ^b
$r(C_2-N_3)$	1.447	1.412	1.439
$r(N_3 = O_4)$	1.222	1.238	1.220 ^b
$r(C_1 - X_5)$	1.085	1.704	1.070^{b}
$r(C_1 - X_6)$	1.083	1.713	1.070 ^b
$r(C_2 - Y_7)$	1.717	1.087	1.070 ^b
Bond angles (de	egree)		
$(C_1C_2N_3)$	115.3	118.9	117.1
$(C_2N_3O_4)$	115.2	112.4	112.7
$(C_2C_1X_5)$	117.7	123.7	120.0^{b}
$(C_2C_1X_6)$	122.1	120.2	120.0 ^b
$(C_1C_2Y_7)$	125.1	122.0	120.0 ^b
Torsional angle	(degree)		
$(C_1C_2N_3O_4)$	180.0	180.0	180.0
Dipole moment	(Debye)		
μ_t	3.47	2.59	2.77
Rotational cons	stants (GHz)		
А	5.59679	3.58007	
В	4.12471	1.48291	
С	2.37365	1.04858	

^a Structural parameters from microwave data on nitrosoethylene in Ref. [6]

'Assumed parameters

the sake of comparison. The optimized structural paramaters of the chlorinated forms were compared to the corresponding parameters obtained from microwave data of nitrosoethylene [6]. Note that some of the parameters had to be guessed because they could not be found in the relevant literature. Further, the experimental data is from the parent molecule only because we could not find data for the chlorinated forms.

Asymmetric torsional potential scans

Potential scans for the internal rotation about the C–N single bond were obtained by allowing the CCNO dihedral angles (Φ) in the molecule to vary from 0° (*cis* position) to 180° (*trans* position). Full geometry optimizations at each of the fixed dihedral angles (Φ) of 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, and 165° were carried out at the MP2/6–311+G** level. The torsional potential was represented as a Fourier cosine series in the dihedral angle (Φ):

$$E(\phi) = V_0 + \sum_{n=1}^{6} \frac{V_n}{2} [1 - \cos(n\phi)]$$
(1)

where the potential coefficients from V_1 to V_6 are considered adequate to describe the potential function. The results of the energy optimizations at the MP2 level were used to calculate the six coefficients by least squares fitting for the three systems (Table 3).

Structure	NE			Mono-ClNE			di-ClNE		
	Φ	$E_{ m t}$	$E_{\rm r}$	Φ	E_{t}	$E_{\rm r}$	Φ	Et	$E_{\rm r}$
cis trans TS	0.0 180.0 90.6	-207.374476 -207.381337 -207.367301	4.305 0.000 8.808	0.0 180.0 92.3	-666.430627 -666.438523 -666.423833	4.955 0.000 9.218	0.0 180.0 88.7	-1125.480587 -1125.489203 -1125.473684	5.406 0.000 9.738

Note that the data are given for all the molecules in the table, although those for the parent molecule have already been published [31]. The three potential curves in the molecule are shown in Fig. 2.

544

Although the curve for the parent molecule has already been published, it is shown here again to emphasize the expected similarities between the potentials for the parent and those for the chlorinated derivatives. This is necessary because in the chlorinated molecules some slight linear dependencies in the wavefunctions appear, which do not show up in the parent molecules. The reasons are the larger basis sets in case of Cl atoms. The curve for the parent molecule might suggest a minimum about 15° away from the actual *cis* form, however, this is only an artifact of the fit and not due to the ab initio calculations. Note that the calculations for the cis form were not started at the exact dihedral angle. Even if so, if *cis* were a maximum or a saddle point, then there would be imaginary frequencies, which is not the case. The similarity of the curves indicates that these linear dependencies do not have drastic consequences in the results. Especially for the spectra, it seems to be more practical to turn to the MP2 spectra instead of the DFT ones [31], because it is known that all MP2 frequencies are too high and thus can be scaled, while for the DFT ones some are usually too high and others too low, and thus no scaling can be done.

Table 3 Calculated potential constants in kcal mol^{-1} (see equation in the text) for the asymmetric torsion in nitrosoethylene (NE), monochloro-nitrosoethylene (mono-CINE) and dichloro-nitrosoethylene (di-CINE), together with the root mean square deviations, rms in kcal mol^{-1} , and the maximum ("maximum" refers not to *trans* where the relative deviation of the fit is infinite due to the division by 0, being the exact value for *trans*) deviations d_m relative to the calculated point in %, for the fits, as well as E_0 in Hartree to which the relative energies refer (all on MP2 level)

Quantity	NE	mono-ClNE	di-ClNE
$V_0 V_1$	4.309	4.957	5.406
	-2.823	-3.264	4.146
V_2 V_3 V_4	6.684 - 1.331 - 0.6982	6.765 - 1.639 - 0.4589	7.022 -1.202 -0.2611
V_5	-0.1579	-0.6198×10^{-1}	$\begin{array}{c} -0.6114 \times 10^{-1} \\ 0.1180 \times 10^{-2} \\ 0.4481 \times 10^{-2} \end{array}$
V_6	-0.3215×10^{-1}	-0.4019×10^{-1}	
RMS	0.2911×10^{-2}	0.6016×10^{-2}	
$d_{\rm m}$	0.8012 -207.381344	1.392	0.5882
E_0		-666.438537	-1125.489217

The rotational barriers increase when going from the parent molecule to monochlorinated and dichlorinated derivatives. This is relatively easy to explain and in line with expectations. When going from butadiene to nitroso ethylene, one subtitutes the $CH = CH_2$ group in butadiene by the more electronegative N = O group and thus increases the double bond character in the C–N bond as compared to the C–C one because the more electronegative N = O group attracts electrons out of the vinyl group partially into the C–N bond, but also into the NO group itself. Thus, the rotational barrier in

Fig. 2 Calculated potential curves for the asymmetric torsion in nitrosoethylenederivatives at $MP2/6-311+G^{**}$ level: parent molecule (*solid line*, MP2 numbers highlighted by *hexagons*), monochloroderivative (dashed line, MP2 numbers highlighted by *triangles*), dichloroderivative (*dashed-pointed line*, MP2 numbers highlighted by *diamonds*)

Table 4 Internal coordinate definitions for nitrosoethylene (X, Y = H), monochloro-nitrosoethylene (X = H, Y = Cl) and dichloro-nitrosoethylene (X = Cl, Y = H)

No.	Coordinate	Definition	
1	$C_1 - C_2$	Stretch	R
2	$C_2 - N_3$	Stretch	Х
3	N ₃ -O ₄	Stretch	S
4	$C_1 - X_5$	Stretch	P_1
5	$C_1 - X_6$	Stretch	P_2
6	$C_2 - Y_7$	Stretch	T
7	$\overline{C_1C_2N_3}$	Bend	β_1
8	$N_3C_2Y_7$	Bend	β_2
9	$C_1C_2Y_7$	Bend	β ₃
10	$C_2N_3O_4$	Bend	γ
11	$X_5C_1X_6$	Bend	α_1
12	$C_2C_1X_5$	Bend	α_2
13	$C_2C_1X_6$	Bend	α_3
14	$C_2 - Y_7$	Wag (out-of-plane bend)	ω
15	$X_5C_1C_2N_3 - X_6C_1C_2N_3$	Torsion	ξ1
16	$X_5C_1C_2N_3 + X_6C_1C_2N_3$	Torsion	ξ2
17	$C_1C_2N_3O_4 + Y_7C_2N_3O_4$	Asymmetric torsion	τ

Note that they hold also for d_1 -nitrosoethylene (X = H, Y = D) and for d_2 -nitrosoethylene (X = D, Y = H). For atom denotation see Fig. 1

nitrosoethylene is expected to be higher than that in butadiene, which we found to be 5.44 kcal mol⁻¹ at MP2/6-311+G**, and about 7 kcal mol⁻¹ at the DFT/6-311+G** level. When on the other side of the C-N bond hydrogens are replaced by chlorines, the electronegativity is increased and thus the double bond character of the C-N bond increased, thus increasing the rotational barriers when going from a CH₂=CH group to a CH₂=CCl and on to a CCl₂=CH group. The more electronegative groups prevent to some extent the attraction of electrons into the NO group itself, leaving a higher electron density in the C-C bond. In fluorinated and brominated derivatives one expects the same trend, but the corresponding increases in barriers to be larger in the former and lower in the latter ones.

 Table 5 Symmetry coordinates (not normalized) for nitrosoethylenes (denotation as in Table 4)

Species	Descripti	on	Symmetry coordinate
A'	CX ₂	Anti-symmetric stretch	$S_1 = P_1 - P_2$
	CX_2	Symmetric stretch	$S_2 = P_1 + P_2$
	C–Y	Stretch	$S_3 = T$
	N = O	Stretch	$S_4 = S$
	C = C	Stretch	$S_5 = R$
	C–N	Stretch	$S_6 = X$
	CX_2	Scissor deformation	$S_7 = 2\alpha_1 - \alpha_2 - \alpha_3$
	CX_2	Wag	$S_8 = \alpha_2 - \alpha_3$
	C–Ý	In-plane bend	$S_9 = \beta_2 - \beta_3$
	C = C - N	In-plane bend	$S_{10} = 2\beta_1 - \beta_2 - \beta_3$
	CNO	In-plane bend	$S_{11} = \gamma$
A"	C–Y	Wag (out-of-plane bend)	$S_{12} = \omega$
	CX_2	Deformation I	$S_{13} = \xi_1$
	CX_2^{-}	Deformation II	$S_{14} = \xi_2$
	-	Asymmetric torsion	$S_{15} = \tau$

The potentials are rather flat around *cis*. A reason for this might be that the NO group could attract enough electron density into the C–N bond to simulate some amount of conjugation even in slightly non-planar structures. However, if not for steric effects, this should be the same in the *trans* conformer. However, *cis*, as opposed to *trans*, is somewhat destabilized by steric effects, which could lead to the flatter potential around *cis*.

Normal coordinate analyses and vibrational spectra

The optimized structural parameters of nitrosoethylene were used to calculate the vibrational frequencies of the d_0 , d_1 and d_3 deuterated species of the molecule as well as the chlorinated derivatives at the MP2/6–311 + G** level of calculation. Nitrosoethylene in its *trans* conformation has C_s symmetry and the 15 vibrational modes span the irreducible representations: 11 A' and 4 A''. The A' modes should be polarized whereas the A'' modes be depolarized in the Raman spectrum of the liquid. Normal coordinate analyses were carried out for the stable *trans* conformers of the molecules as described previously [32, 33]. The internal and symmetry coordinates of the molecule are listed in Tables 4 and 5.

The PED for each normal mode among the symmetry coordinates of the molecules were calculated and are given in Table 6.

A complete assignment of the fundamentals was proposed based on the calculated PED values, infrared band intensities, Raman line activities, depolarisation ratios and isotopic substitution in case of the d_1 and d_2 species of the parent molecule. The data of the vibrational assignments are listed in Table 6.

The vibrational infrared and Raman spectra were calculated using the computational methods described previously [33, 34]. To calculate the Raman spectra, the wavenumbers k_j , the scattering activities S_j , and the depolarisation ratios ρ_j were obtained from MP2/ $6-311+G^{**}$ calculations. The calculated vibrational Raman and infrared spectra of the parent molecule are shown in Figs. 3 and 4, using scaled wavenumbers.

Results and discussion

Nitrosoethylene $CH_2 = CH-NO$ [4–6, 15, 23] has been the subject of many studies over the past few years. The microwave spectra of *trans*-nitrosoethylene and its ¹⁵ N isotopic species generated by pyrolysis of chloroacetaldehyde oxime—¹⁵ N were observed and its rotational constants, nuclear quadrupole coupling constants due to the nitrogen atom, dipole moments and lowest vibrational frequencies were all determined [5, 6]. More recently, ab initio [15] and DFT [23] studies of nitrosoethylene and its derivatives have been reported. From the theoretical calculations, the structural parameters of the molecule were reported to be strongly affected by the substitution groups in the nitrosoethylene

Table 6 Symmetry species, s_i , MP2 wavenumbers, k_i in cm⁻¹, scaled wavenumbers, k'_i in cm⁻¹, infrared intensities, I_i in km mol⁻¹, Raman activities, S_i in Å⁴ amu⁻¹, depolarization ratios ρ_i

and distribution of the potential energy of a normal mode in the symmetry coordinates, PED (only values larger than 10% are given), for the normal modes i in d_0 , d_1 , and d_2 -nitrosoethylene

	Si	k_{i}	k'i	Ii	$S_{ m i}$	$ ho_i$	PED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d ₀ -nitros	soethylene (X, Y	Y = H)				
A' 351 333 1.0 0.3 0.66 71% S_{112} 21% S_{11} A' 616 585 0.7 6.4 0.13 57% S_{112} 21% S_{10} 11% S_{10} A' 906 859 23.2 0.7 0.73 52% S_{60} 31% S_{60} 11% S_{10} A' 998 946 40.4 0.2 0.75 71% S_{12} 19% S_{14} A' 1165 1105 60.6 2.0 75 71% S_{12} 19% S_{14} A' 1292 1226 1.4 8.8 0.26 56% S_{20} 20% S_{5} 13% S_{5} A' 426 1352 18.7 20.8 0.41 75% S_{5} 16% S_{5} 12% S_{1} A' 1491 1415 36.7 37.9 0.43 94% S_{4} A' 1492 1226 1.4 8.8 0.26 56% S_{50} 20% S_{5} 13% S_{5} A' 1491 1415 36.7 37.9 0.43 94% S_{4} A' 1491 1415 36.7 37.9 0.43 94% S_{4} A' 3189 2991 0.6 25.3 0.24 70% S_{5} 20% S_{5} A' 3007 3008 3.9 151.2 0.16 66% S_{5} 29% S_{5} A' 303 3099 0.2 52.3 0.68 99% S_{1} d'-nitrosochylene (X = H, Y = D) A' 357 157 0.3 0.3 0.3 0.75 88% S_{15} 11% S_{12} A' 645 612 2.2 1.5 0.75 48% S_{14} 39% S_{12} 12% S_{15} 12% S_{10} A' 645 612 2.2 1.5 0.75 48% S_{15} 11% S_{12} A' 867 823 8.0 1.8 0.15 33% S_{8} 33% S_{2} 26% S_{6} A' 867 823 8.0 1.8 0.15 33% S_{8} 33% S_{2} 26% S_{6} A' 867 823 8.0 1.8 0.15 33% S_{8} 33% S_{2} 26% S_{6} A' 840 797 9.4 0.3 0.75 59% S_{14} 43% S_{12} 12% S_{15} 11% S_{12} A' 847 823 8.0 1.8 0.15 33% S_{8} 25% S_{6} 13% S_{10} A' 1411 1338 26.6 36.0 0.35 73% S_{2} 25% S_{6} 13% S_{10} A' 1449 1413 35.0 37.7 0.44 93% S_{2} 25% S_{6} 13% S_{10} A' 1449 143 35.0 37.7 0.44 93% S_{2} 25% S_{6} 13% S_{10} A' 1449 296 0.4 97.6 0.10 99% S_{2} A' 3194 2996 0.4 97.6 0.10 99% S_{13} A' 1449 143 35.0 37.7 0.40 93% S_{4} A' 1449 154 0.1 0.1 0.75 86% S_{11} 13% S_{12} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 3194 2996 0.4 97.6 0.10 99% S_{13} A' 1448 144 4.4 6.7 0.20 76% S_{13} 34% S_{15} 11% S_{11} A' 1449 144 4.4 4.52 0.42 93% S_{13} A' 1440 175 14 0.74 0.4 0.75 97% S_{14} A' 1410 1536 0.77 0.6 0.4 0.29 61% S_{13} 110% S_{10} 11% S_{10} 11% S_{10} A' 1490 144 4.4 4.52 0.42 93% S_{13}	Å"	159	159	0.2	0.4	0.75	$87\% S_{15}, 13\% S_{12}$
A' 616 S85 0.7 6.4 0.13 57% S_{11} 21% S_{10} 1% S_{10} A' 906 859 23.2 0.7 0.73 52% S_{13} 53% S_{15} A' 905 903 27.0 2.4 0.75 93% S_{13} 19% S_{14} 10% S_{15} A' 105 1105 60.6 28.1 0.47 33% S_{6} 11% S_{6} 1.1% S_{10} A' 1165 1105 60.6 28.1 0.47 33% S_{6} 1.1% S_{10} 1% S_{10} A' 1426 1352 18.7 20.8 0.41 75% S_{7} 12% S_{5} 1.6% S_{5} 12% S_{11} 11% S_{10} A' 1426 1352 18.7 20.8 0.41 75% S_{7} 12% S_{5} 1.5% S_{5} 1.2% A' 1426 1352 18.7 20.8 0.41 75% S_{7} 12% S_{5} 1.5% S_{7} 1.1% S_{10} A' 1426 1352 18.7 20.8 0.41 75% S_{7} 10% S_{5} 3.0% S_{5} A' 1426 1352 18.7 20.8 0.41 75% S_{7} 10% S_{5} 3.0% S_{5} A' 1436 1579 2.4 36.6 0.11 68% S_{5} 10% S_{5} 3.2% S_{5} 3.1% S_{5} A' 1664 1579 2.4 36.6 0.11 68% S_{5} 10% S_{5} 3.1% S_{5} A' 3189 290 16 2.2.3 0.68 99% S_{1} d ₁ -introscethylene (X = H, Y = D) A' 345 328 1.0 0.3 0.75 88% S_{15} 11% S_{12} 2.5% S_{15} 11% S_{12} A' 45 612 2.2 1.5 0.75 48% S_{15} 11% S_{12} 2.5% S_{15} 12% S_{1	A'	351	333	1.0	0.3	0.66	$71\% S_{10}, 21\% S_{11}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	A'	616	585	0.7	6.4	0.13	$57\% S_{11}, 21\% S_6, 11\% S_{10}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A"	678	643	0.9	1.5	0.75	$81\% S_{14}, 10\% S_{15}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	906	859	23.2	0.7	0.73	$52\% S_{8}, 36\% S_{6}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A"	952	903	27.0	2.4	0.75	$93\% S_{13}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A"	998	946	40.4	0.2	0.75	71% S12, 19% S14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	1165	1105	60.6	28.1	0.47	$38\% S_{4}$ 17% S ₂ 16% S ₂ 12% S ₁₁ 11% S ₁₀
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	1292	1226	1.4	8.8	0.26	$56\% S_0, 20\% S_2, 13\% S_5$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	1426	1352	18.7	20.8	0.41	$75\% S_7$, 12% S ₀
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	1491	1415	36.7	37.9	0.43	$94\% S_4$
A: 1869 2951 0.7 25.3 0.74 70% 53, 30% 53 A' 3207 3008 3.9 151.2 0.16 69% 53, 29% 52 A' 3303 3099 0.2 52.3 0.68 99% 51 d_i-nitroscethylene (X = H, Y = D) 7 0.3 0.3 0.75 88% 515, 11% 512 A' 345 328 1.0 0.3 0.63 72% 510, 21% 511 A' 590 559 0.6 4.9 0.14 50% 51, 19% 512 25.4 A'' 645 612 2.2 1.5 0.75 50% 58, 33% 52, 26% 54 A'' 840 797 9.4 0.3 0.75 50% 58, 33% 59, 26% 54 A'' 954 905 43.0 2.1 0.75 100% 51, A' 198 1136 35.4 10.7 0.73 44% 58, 25% 56, 13% 510 A' 1498 1413 35.0 37.7 0.40 93% 53 26% 53 A' 1489 1413 35.0 37.7 0.40 93% 53 <th< td=""><td>A'</td><td>1664</td><td>1579</td><td>24</td><td>36.6</td><td>0.11</td><td>$68\% S_5 19\% S_7$</td></th<>	A'	1664	1579	24	36.6	0.11	$68\% S_5 19\% S_7$
A 307 308 3.9 15.2 0.7 60% 5.3 20% 5.3 A' 303 3099 0.2 52.3 0.68 99% 5. A' 303 3099 0.2 52.3 0.68 99% 5. A' 345 328 1.0 0.3 0.63 72% 5.0 21% 5.1 A' 345 328 1.0 0.3 0.63 72% 5.0 21% 5.1 A' 345 612 2.2 1.5 0.75 88% 5.12% 5.12% 5.0 A'' 645 612 2.2 1.5 0.75 50% 5.12% 5.12% 5.1 A'' 840 797 9.4 0.3 0.75 50% 5.12.9% 5.1 A'' 840 797 9.4 0.3 0.75 50% 5.12.9% 5.1 A'' 954 905 43.0 2.1 0.75 100% 5.3 A' 198 1136 35.4 10.7 0.73 41% 5.2 52% 5.6 19% 5.1 A' 1489 1413 35.0 37.7 0.40 93% 5.4 A' 3194 2996 0.4 97.6 0.10 99% 5.2 A' 3194 2996 0.4 97.6 0.10 99% 5.2 A' 314 2296 0.4 97.6 0.10 99% 5.2 A' 314 228 1.2 0.2 0.73 68% 5.1.3% 5.12 A' 314 298 1.2 0.2 0.73 68% 5.1.5% 5.13% 5.12 A' 314 298 1.2 0.2 0.73 68% 5.1.5% 5.3 A' 314 298 1.2 0.2 0.73 68% 5.1.5% 5.1 A' 314 298 1.2 0.2 0.73 68% 5.1.5% 5.1.5% 5.1 A' 314 298 1.2 0.2 0.73 68% 5.1.5% 5.1.5% 5.1 A' 314 298 1.2 0.2 0.73 68% 5.1.5%	A'	3189	2991	0.6	25.3	0.24	70% S ₂ $30%$ S ₂
A 3303 3009 0.2 52.3 0.68 99% S1 d ₁ -nitrosoethylene (X = H, Y = D) <t< td=""><td>A'</td><td>3207</td><td>3008</td><td>3.9</td><td>151.2</td><td>0.16</td><td>69% S₂, 29% S₂</td></t<>	A'	3207	3008	3.9	151.2	0.16	69% S ₂ , 29% S ₂
A the form that	A'	3303	3099	0.2	52.3	0.68	$99\% S_1$
	d_nitro	soethvlene (X =	= H V = D	0.2	0210	0.00	
A1571571570.50.50.6372% 51011% 512A'5905590.64.90.1450% 51119% 5122% 510A''6456122.21.50.7548% 51439% 51212% 50A''8407979.40.30.7550% 5129% 514A''8678238.01.80.1535% 58, 33% 59, 26% 56A''95490543.02.10.75100% 513A'99494334.913.70.3741% 58, 26% 56, 13% 510A'1198113635.410.70.7344% 58, 26% 56, 13% 510A'1198113635.037.70.4093% 54A'164015561.635.30.0865% 53A'164015561.635.30.0865% 53A'319429960.497.60.1099% 52A'319429960.497.60.1099% 52A'31942981.20.20.7368% 516.16% 511A''5140.00.40.7597% 514A''3142981.20.20.7368% 516.16% 56A''3142981.20.20.7597% 514A''5140.00.40.7597% 514A''3142981.26.40.1261% 511A''314	Λ	157	157	0.3	0.3	0.75	88% S. 11% S.
A 543 550 559 0.6 4.9 0.14 50% $5_{11,1}9\%$ $5_{6,1}12\%$ 5_{10} 5_{17} 5_{11} 5_{17} A" 645 612 2.2 1.5 0.75 48% $5_{14,1}$ 39% $5_{12,1}12\%$ 5_{15} A" 840 797 9.4 0.3 0.75 50% $5_{12,4}9\%$ 5_{14} 4 A' 867 823 8.0 1.8 0.15 35% $8_{5,3}3\%$ $8_{5,2}2\%$ 5_{6} A' 954 905 43.0 2.1 0.75 100% 5_{13} A' 198 1136 35.4 10.7 0.37 41% $5_{9,2}5\%$ $5_{6,1}9\%$ $5_{11,1}0\%$ S_{8} A' 1411 1338 26.6 36.0 0.35 73% $5_{7,1}7\%$ 5_{5} A' 1449 1413 35.0 37.7 0.40 93% 5_{4} A' 1449 1413 35.0 37.7 0.40 93% 5_{4} A' 1640 1556 1.6 35.3 0.08 65% $5_{5,2}3\%$ S_{7} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 314 298 1.2 0.2 0.73 68% $S_{15,1}3\%$ S_{12} A' 314 298 1.2 0.2 0.73 68% $S_{10,1}16\%$ $S_{8,1}16\%$ S_{11} A' 597 566 1.2 6.4 0.12 61% $S_{11,1}16\%$ S_{6} A' 597 566 1.2 6.4 0.12 61% $S_{11,1}16\%$ S_{6} A' 759 720 25.8 3.3 0.75 99% S_{13} A' 759 720 25.8 3.3 0.75 99% S_{13} A' 1136 1078 76.2 25.9 0.51 88% S_{7} A' 1136 1078 76.2 25.9 0.51 88% S_{7} A' 1136 1078 76.2 25.9 0.51 88% S_{7} A' 1136 1078 76.2 25.9 0.51 85% $S_{6,1}1\%$ $S_{11,1}1\%$ $S_{10,1}1\%$ $S_$	Δ,	345	328	1.0	0.3	0.75	72% S., $21%$ S.,
A.50050760040750750750750750750750750750750750750750750751750751	Λ, ,	590	550	0.6	4.9	0.03	50% S. $10%$ S. $12%$ S. $12%$ S. $12%$ S.
A 67.5 612 2.2 1.3 0.75 60.7 $512, 49.65, 514$ A'8407979.4 0.3 0.75 $50\%, 512, 49\%, 514$ A'8678238.01.8 0.15 $35\%, 582, 50\%, 564$ A'994943 34.9 2.1 0.75 $100\%, 5_{13}$ A'1981136 35.4 10.7 0.73 $44\%, 58, 25\%, 56, 19\%, 511, 10\%, 58A'1198113635.410.70.7344\%, 58, 25\%, 56, 19\%, 510A'1411133826.636.00.3573\%, 57, 17\%, 55A'144915561.635.30.0865\%, 58, 23\%, 57A'164015561.635.30.0865\%, 58, 23\%, 57A'319429960.497.60.1099\%, 53A'319429960.497.60.1099\%, 53A'319429960.497.60.1099\%, 53A'31442981.20.20.7386\%, 510, 16\%, 58, 16\%, 511A'31442981.20.20.7597\%, 514A'5425140.00.40.7597\%, 514A'5975661.26.40.1261\%, 58, 16\%, 511A'5975661.26.40.1261\%, 58, 24\%, 56A'7657267.60.4$	A A"	590	612	0.0	4.9	0.14	$30 / 0 S_{11}, 17 / 0 S_6, 12 / 0 S_9, 12 / 0 S_{10}$
A 640 77 23 8.0 1.8 0.15 307 312 797 314 A' 867 823 8.0 2.1 0.75 100% S_{13} 50% S_{5} 25% S_{6} 10% S_{11} 10% S_{8} A' 994 943 34.9 13.7 0.37 41% S_{9} 25% S_{6} 19% S_{11} 10% S_{8} A' 1198 1136 35.4 10.7 0.73 44% S_{8} 26% S_{6} 13% S_{10} A' 1411 1338 26.6 36.0 0.35 73% S_{7} 17% S_{5} A' 1489 1413 35.0 37.7 0.40 93% S_{4} A' 1640 1556 1.6 35.3 0.08 65% S_{5} 23% S_{7} A' 2375 2228 2.8 34.1 0.34 95% S_{3} A' 3194 2996 0.4 97.6 0.10 99% S_{2} A' 3303 3098 0.1 54.5 0.71 10% S_{1} <i>d</i> ₂ -nitro soethylene (X = D, Y = H) A'' 154 154 0.1 0.1 0.75 86% S_{15} 13% S_{12} A' 314 298 1.2 0.2 0.73 68% S_{10} 16% S_{8} 16% S_{11} A'' 597 566 1.2 6.4 0.12 61% S_{11} 16% S_{6} A'' 759 720 25.8 3.3 0.75 99% S_{14} A'' 759 720 25.8 3.3 0.75 99% S_{13} A'' 759 720 25.8 3.3 0.75 99% S_{13} A'' 759 726 7.6 0.4 0.29 61% S_{8} 24% S_{6} A'' 1046 992 7.1 6.8 0.51 $8\%\%$ S_{7} A'' 1046 992 7.1 6.8 0.51 $8\%\%$ S_{7} A'' 1136 1078 76.2 25.9 0.51 55% S_{6} 15% S_{11} 12% S_{10} 11% S_{8} A' 1279 1214 1.4 6.7 0.20 76% S_{9} A' 1136 1078 76.2 25.9 0.51 55% S_{6} 15% S_{11} 12% S_{10} 11% S_{8} A' 1279 1214 1.4 6.7 0.20 76% S_{9} A' 14300 1414 41.4 45.2 0.42 93% S_{4} A' 1612 1529 2.6 48.8 0.12 72% S_{5} 10% S_{9} A' 14490 1414 41.4 45.2 0.42 93% S_{4} A' 1612 1529 2.6 48.8 0.12 72% S_{5} 10% S_{9} A' 1490 1414 41.4 45.2 0.42 93% S_{4} A' 1612 1529 2.6 48.8 0.12 72% S_{5} 10% S_{9} A' 13202 3004 4.2 79.6 0.23 99% S_{3}	A A"	840	707	2.2	0.3	0.75	40/0 S14, 59/0 S12, 12/0 S15 50% S 40% S
A, 307 623 3.0 1.8 0.15 307 387 379 397 2076 36 A' 994 943 34.9 13.7 0.37 41% $59,$ 25% $56,$ 19% 5_{11} , 10% S_8 A' 1198 1136 35.4 10.7 0.73 44% $59,$ 25% $56,$ 13% 5_{10} A' 1411 1338 26.6 36.0 0.35 73% $57,$ 17% 5_5 A' 1489 1413 35.0 37.7 0.40 93% 54 A' 1640 1556 1.6 35.3 0.08 65% $55,$ 23% 57 A' 3194 2996 0.4 97.6 0.10 99% 5_2 A' 3303 3098 0.1 54.5 0.71 100% S_1 A' 3303 3098 0.1 54.5 0.71 100% S_1 A' 314 2996 0.4 97.6 0.10 99% 5_2 A' 3194 2996 0.4 97.6 0.10 99% 5_2 A' 3194 2996 0.4 97.6 0.10 99% S_2 A' 3194 2996 0.4 97.6 0.10 99% S_1 A' 314 298 1.2 0.2 0.73 68% $S_{10},$ 16% $S_{8},$ 16% S_{11} A'' 542 514 0.0 0.4 0.75 97% S_{14} A' 597 566 1.2 6.4 0.12 61% S_{13} 10% S_{6} A'' 759 720 25.8 3.3 0.75 99% S_{13} A'' 759 720 25.8 3.3 0.75 99% S_{13} A'' 759 720 25.8 3.3 0.75 99% S_{13} A'' 765 726 7.6 0.4 0.29 61% $S_{8},$ 24% S_{6} A'' 941 893 22.6 1.2 0.75 94% S_{12} A'' 1136 1078 76.2 25.9 0.51 55% S_6 15% $S_{11},$ 12% $S_{10},$ 11% S_8 A' 1136 1078 76.2 25.9 0.51 55% $S_6,$ 15% $S_{11},$ 12% $S_{10},$ 11% S_8 A' 1136 1078 76.2 25.9 0.51 55% $S_{6},$ 15% $S_{11},$ 12% $S_{10},$ 11% S_8 A' 1279 1214 1.4 6.7 0.20 76% S_9 A' 1279 1214 1.4 4.52 0.42 93% S_4 A' 1612 1529 2.6 48.8 0.12 72% $S_5,$ 10% S_9 A' 1334 2189 0.7 31.1 0.14 94% S_2 A' 13202 3004 4.2 79.6 0.23 99% S_{1}	A,	867	823	9.4	1.8	0.75	$30 / 0 S_{12}, 47 / 0 S_{14}$ $350/ S_{2}, 320/ S_{2}, 260/ S_{2}$
A' 994 943 34.9 13.7 0.73 100 $^{+0.5}$ $^{-0.5}$ $^{-0.6}$ $^{-0.5}$ A' 1198 1136 35.4 10.7 0.73 44% $S_8, 26\%$ $S_6, 19\%$ $S_{11}, 10\%$ S_8 A' 1411 1338 26.6 36.0 0.35 73% $S_7, 17\%$ S_5 A' 1449 1413 35.0 37.7 0.40 93% S_4 A' 1640 1556 1.6 35.3 0.08 65% $S_5, 23\%$ S_7 A' 2375 2228 2.8 34.1 0.34 95% S_5 A' 3194 2996 0.4 97.6 0.10 99% S_2 A' 31303 3098 0.1 54.5 0.71 100% S_1 d_2-nitro soethylene (X = D, Y = H) Z 2 0.2 0.73 68% $S_{10}, 16\%$ $S_{11}, 16\%$ S_{11} A' 314 298 1.2 0.2 0.73 68% $S_{10}, 16\%$ $S_{11}, 16\%$ S_6 A'' 597 566 1.2 6.4 0.12 61% $S_{11}, 16\%$ S_6 A'' 759 720	A ^"	054	025 005	0.0 43.0	1.0	0.15	55 70 58, 55 70 59, 20 70 56 10004 S
A994943943943943943943943943943943943943943943943943943943944944954944944956946946946946A'1411133826.636.00.3573%57, 17%555A'1489141335.037.70.4093%545A'164015561.635.30.0865%55, 23%57A'237522282.834.10.3495%53A'319429960.497.60.1099%52A'330330980.154.50.71100%51 d_2 -nitro soethylene (X = D, Y = H) A'' 1540.10.10.7586%51.016%58, 16%51.1A'3142981.20.20.7368%51.016%58, 16%51.1A''5975661.26.40.1261%58, 16%56A''75972025.83.30.7599%51.3A'10469927.16.80.5188%57A'10469927.16.80.5188%57A'1136107876.225.90.5155%56, 15%51.112%A'10469927.16.8<	A,	934	903	43.0	2.1	0.75	$100 / 0 S_{13}$ 100 / C 250 / C 100 / C 100 / C
A113011303.410.70.734470 Sg. 2070 Sg. 1070 Sg.A'1411133826.636.00.35 73% Sg. 17% Sg.A'1489141335.037.70.4093% Sq.A'164015561.635.30.0865% Sg. 23% Sg.A'237522282.834.10.3495% Sg.A'319429960.497.60.1099% Sg.A'330330980.154.50.71100% Sg.d2-nitro soethylene (X = D, Y = H) </td <td>A ^,</td> <td>994 1108</td> <td>945</td> <td>34.9</td> <td>15.7</td> <td>0.57</td> <td>$4170 \ S_9, 2570 \ S_6, 1970 \ S_{11}, 1070 \ S_8$ $4494 \ S \ 2694 \ S \ 1394 \ S$</td>	A ^,	994 1108	945	34.9	15.7	0.57	$4170 \ S_9, 2570 \ S_6, 1970 \ S_{11}, 1070 \ S_8$ $4494 \ S \ 2694 \ S \ 1394 \ S$
A 1411 1336 20.0 50.0 0.33 73^{70} <	A ,	1190	1228	55.4 26.6	10.7	0.75	$44 70 \ S_8, 20 70 \ S_6, 15 70 \ S_{10}$
A141333.0 31.7 0.40 53.6 34 A'164015561.6 35.3 0.08 65% 5_5 , 23% 5_7 A'237522282.8 34.1 0.34 95% S_3 A'31942996 0.4 97.6 0.10 99% S_2 A'33033098 0.1 54.5 0.71 100% S_1 d_2 -nitro soethylene (X = D, Y = H) A'' 154 0.1 0.1 0.75 86% S_{15} , 13% S_{12} A'314298 1.2 0.2 0.73 68% S_{10} , 16% S_{81} 65% S_{11} A''597566 1.2 6.4 0.12 61% S_{11} 6% S_{11} A''75972025.8 3.3 0.75 99% S_{13} A'765726 7.6 0.4 0.29 61% S_{12} A'1046992 7.1 6.8 0.51 88% S_7 A'11361078 76.2 25.9 0.51 55% S_6 15% S_{11} 11% S_8 A'12791214 1.4 6.7 0.20 76% S_9 A' S_{10} S_{10} S_{10} S_{10} A'1490141441.4 45.2 0.42 93% S_4 A' S_{10} S_{10} S_{10} A' <td>A ,</td> <td>1411</td> <td>1330</td> <td>20.0</td> <td>30.0 27 7</td> <td>0.55</td> <td>$7570 S_7, 1770 S_5$</td>	A ,	1411	1330	20.0	30.0 27 7	0.55	$7570 S_7, 1770 S_5$
A104013301.033.30.0603.6 35, 23.9 37A'237522282.834.10.3495% S3A'319429960.497.60.1099% S2A'330330980.154.50.71100% S1 d_2 -nitro soethylene (X = D, Y = H)A''3142981.20.20.7368% S16, 13% S12A''3142981.20.20.7368% S16, 16% S8, 16% S11A''5425140.00.40.7597% S14A'5975661.26.40.1261% S6, 11, 16% S6A''75972025.83.30.7599% S13A'7657267.60.40.2961% S8, 24% S6A''10469927.16.80.5188% S7A'1136107876.225.90.5155% S6, 15% S11, 12% S10, 11% S8A'127912141.46.70.2076% S9A'1490141441.445.20.4293% S4A'161215292.648.80.1272% S5, 10% S9A'233421890.731.10.1494% S2A'246223100.125.30.7399% S1A'320230044.279.60.2399% S3	A ,	1409	1415	33.0	25.2	0.40	9570 54 659/ S 229/ S
A257322282.834.10.3493% 33A'319429960.497.60.1099% S_2 A'330330980.154.50.71100% S_1 d2-nitro soethylene (X = D, Y = H)A'1540.10.10.7586% S_{15} , 13% S_{12} A'3142981.20.20.7368% S_{10} , 16% S_8 , 16% S_{11} A''5425140.00.40.7597% S_{14} A''5975661.26.40.1261% S_{11} , 16% S_6 A''75972025.83.30.7599% S_{13} A''7657267.60.40.2961% S_8 , 24% S_6 A''10469927.16.80.5188% S_7 A'1136107876.225.90.5155% S_6 , 15% S_{11} , 12% S_{10} , 11% S_8 A'161215292.648.80.1272% S_5 , 10% S_9 A'161215292.648.80.1272% S_5 , 10% S_9 A'233421890.731.10.1494% S_2 A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A,	2275	1330	1.0	55.5 24.1	0.08	$0570 5_5, 2570 5_7$
A 3194 2990 0.4 97.0 0.10 997.0 3_2 A' 3303 3098 0.1 54.5 0.71 100% S_1 d_2 -nitro soethylene (X = D, Y = H)A' 154 154 0.1 0.1 0.75 86% S_{15} , 13% S_{12} A' 314 298 1.2 0.2 0.73 68% S_{10} , 16% S_8 , 16% S_{11} A'' 542 514 0.0 0.4 0.75 97% S_{14} A' 597 566 1.2 6.4 0.12 61% S_{11} , 16% S_6 A'' 759 720 25.8 3.3 0.75 99% S_{13} A' 765 726 7.6 0.4 0.29 61% $S_8, 24\%$ S_6 A'' 1046 992 7.1 6.8 0.51 88% S_7 A' 1046 992 7.1 6.8 0.51 88% $S_{11}, 12\%$ $S_{10}, 11\%$ S_8 A' 1136 1078 76.2 25.9 0.51 55% $S_6, 15\%$ $S_{11}, 12\%$ $S_{10}, 11\%$ S_8 A' 1490 1414 41.4 45.2 0.42 93% S_4 A' 120% S_9 A' 1490 1414 41.4 45.2 0.42 93% S_4 A' S_9 A' 1490 1414 41.4 45.2 0.42 93% <	A ,	2575	2228	2.8	54.1 07.6	0.54	95% S_3
A 5305 5098 0.1 54.3 0.71 $100\% S_1$ d_2 -nitro soethylene (X = D, Y = H)A'' 154 154 0.1 0.1 0.75 $86\% S_{15}, 13\% S_{12}$ A'' 314 298 1.2 0.2 0.73 $68\% S_{10}, 16\% S_8, 16\% S_{11}$ A'' 542 514 0.0 0.4 0.75 $97\% S_{14}$ A'' 597 566 1.2 6.4 0.12 $61\% S_{11}, 16\% S_6$ A'' 759 720 25.8 3.3 0.75 $99\% S_{13}$ A' 765 726 7.6 0.4 0.29 $61\% S_8, 24\% S_6$ A'' 941 893 22.6 1.2 0.75 $94\% S_{12}$ A' 1046 992 7.1 6.8 0.51 $88\% S_7$ A' 1136 1078 76.2 25.9 0.51 $55\% S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$ A' 1136 1078 76.2 25.9 0.51 $55\% S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$ A' 1490 1414 41.4 45.2 0.42 $93\% S_4$ A' 1490 1414 41.4 45.2 0.42 $93\% S_2$ A' 2334 2189 0.7 31.1 0.14 $94\% S_2$ A' 2462 2310 0.1 25.3 0.73 $99\% S_1$ A' 2462 2310 0.1 25.3 0.73 $99\% S_1$	A,	2202	2990	0.4	97.0	0.10	$\frac{9970}{1000}$
d_2 -nitro soethylene (X = D, Y = H)A"1541540.10.10.75 $86\% S_{15}, 13\% S_{12}$ A'3142981.20.20.73 $68\% S_{10}, 16\% S_8, 16\% S_{11}$ A"5425140.00.40.75 $97\% S_{14}$ A'5975661.26.40.12 $61\% S_{11}, 16\% S_6$ A"75972025.83.30.75 $99\% S_{13}$ A'7657267.60.40.29 $61\% S_8, 24\% S_6$ A"94189322.61.20.75 $94\% S_{12}$ A'10469927.16.80.51 $88\% S_7$ A'1136107876.225.90.51 $55\% S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$ A'161215292.648.80.12 $72\% S_5, 10\% S_9$ A'161215292.648.80.12 $72\% S_5, 10\% S_9$ A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A	3303	3098	0.1	54.5	0.71	$100\% S_1$
A'' 1541540.10.10.7586% S_{15} , 13% S_{12} A' 3142981.20.20.7368% S_{10} , 16% S_8 , 16% S_{11} A'' 5425140.00.40.7597% S_{14} A'' 5975661.26.40.1261% S_{11} , 16% S_6 A'' 75972025.83.30.7599% S_{13} A' 7657267.60.40.2961% S_8 , 24% S_6 A'' 94189322.61.20.7594% S_{12} A' 10469927.16.80.5188% S_7 A' 1136107876.225.90.5155% S_6 , 15% S_{11} , 12% S_{10} , 11% S_8 A' 1490141441.445.20.4293% S_4 A' 161215292.648.80.1272% S_5 , 10% S_9 A' 233421890.731.10.1494% S_2 A' 246223100.125.30.7399% S_1 A' 320230044.279.60.2399% S_3	d_2 -nitro	soethylene (X	= D, Y $=$ H)				
A'3142981.20.20.7368% S_{10} , 16% S_8 , 16% S_{11} A''5425140.00.40.7597% S_{14} A'5975661.26.40.1261% S_{11} , 16% S_6 A''75972025.83.30.7599% S_{13} A'7657267.60.40.2961% S_8 , 24% S_6 A''94189322.61.20.7594% S_{12} A'10469927.16.80.5188% S_7 A'1136107876.225.90.5155% S_6 , 15% S_{11} , 12% S_{10} , 11% S_8 A'127912141.46.70.2076% S_9 A'1490141441.445.20.4293% S_4 A'161215292.648.80.1272% S_5 , 10% S_9 A'233421890.731.10.1494% S_2 A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A"	154	154	0.1	0.1	0.75	$86\% S_{15}, 13\% S_{12}$
A"5425140.00.40.7597% S_{14} A'5975661.26.40.12 $61\% S_{11}$, $16\% S_6$ A"75972025.83.30.7599% S_{13} A'7657267.60.40.29 $61\% S_8, 24\% S_6$ A"94189322.61.20.7594% S_{12} A'10469927.16.80.51 $88\% S_7$ A'1136107876.225.90.5155% S_6 , 15% S_{11} , 12% S_{10} , 11% S_8 A'1490141441.445.20.4293% S_4 A'161215292.648.80.1272% S_5 , 10% S_9 A'233421890.731.10.1494% S_2 A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A'	314	298	1.2	0.2	0.73	$68\% S_{10}, 16\% S_8, 16\% S_{11}$
A'5975661.26.40.12 $61\% S_{11}, 16\% S_6$ A"75972025.83.30.7599% S_{13}A'7657267.60.40.29 $61\% S_8, 24\% S_6$ A"94189322.61.20.7594% S_{12}A'10469927.16.80.5188% S7A'1136107876.225.90.5155% S_6, 15% S_{11}, 12% S_{10}, 11% S_8A'127912141.46.70.2076% S9A'161215292.648.80.1272% S_5, 10% S9A'233421890.731.10.1494% S2A'246223100.125.30.7399% S1A'320230044.279.60.2399% S3	A"	542	514	0.0	0.4	0.75	$97\% S_{14}$
A"75972025.83.30.7599% S_{13} A'7657267.60.40.29 $61\% S_8, 24\% S_6$ A"94189322.61.20.7594% S_{12} A'10469927.16.80.5188% S_7 A'1136107876.225.90.5155% $S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$ A'127912141.46.70.2076% S_9 A'161215292.648.80.1272% $S_5, 10\% S_9$ A'233421890.731.10.1494% S_2 A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A'	597	566	1.2	6.4	0.12	$61\% S_{11}, 16\% S_6$
A'7657267.60.40.29 $61\% S_8, 24\% S_6$ A''94189322.61.20.7594\% S_{12}A'10469927.16.80.5188% S7A'1136107876.225.90.5155% S_6, 15% S_{11}, 12% S_{10}, 11% S_8A'127912141.46.70.2076% S9A'161215292.648.80.1272% S_5, 10% S9A'233421890.731.10.1494% S2A'246223100.125.30.7399% S1A'320230044.279.60.2399% S3	A"	759	720	25.8	3.3	0.75	$99\% S_{13}$
A"94189322.61.20.7594% S_{12} A'10469927.16.80.5188% S_7 A'1136107876.225.90.5155% S_6 , 15% S_{11} , 12% S_{10} , 11% S_8 A'127912141.46.70.2076% S_9 A'1490141441.445.20.4293% S_4 A'161215292.648.80.1272% S_5 , 10% S_9 A'233421890.731.10.1494% S_2 A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A'	765	726	7.6	0.4	0.29	$61\% S_8, 24\% S_6$
A'10469927.16.80.51 $88\% S_7$ A'1136107876.225.90.51 $55\% S_6$, $15\% S_{11}$, $12\% S_{10}$, $11\% S_8$ A'127912141.46.70.20 $76\% S_9$ A'1490141441.445.20.42 $93\% S_4$ A'161215292.648.80.12 $72\% S_5$, $10\% S_9$ A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A"	941	893	22.6	1.2	0.75	$94\% S_{12}$
A'1136107876.225.90.51 $55\% S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$ A'127912141.46.70.20 $76\% S_9$ A'1490141441.445.20.42 $93\% S_4$ A'161215292.648.80.12 $72\% S_5, 10\% S_9$ A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A'	1046	992	7.1	6.8	0.51	$88\% S_7$
A'127912141.46.70.20 $76\% S_9$ A'1490141441.445.20.42 $93\% S_4$ A'161215292.648.80.12 $72\% S_5$, 10% S9A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.7399% S1A'320230044.279.60.2399% S3	A'	1136	1078	76.2	25.9	0.51	$55\% S_6, 15\% S_{11}, 12\% S_{10}, 11\% S_8$
A'1490141441.445.20.42 $93\% S_4$ A'161215292.648.80.12 $72\% S_5, 10\% S_9$ A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A'	1279	1214	1.4	6.7	0.20	$76\% S_9$
A'161215292.648.80.12 $72\% S_5, 10\% S_9$ A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A'	1490	1414	41.4	45.2	0.42	$93\% S_4$
A'233421890.731.10.14 $94\% S_2$ A'246223100.125.30.73 $99\% S_1$ A'320230044.279.60.23 $99\% S_3$	A'	1612	1529	2.6	48.8	0.12	$72\% S_5, 10\% S_9$
A'246223100.125.30.7399% S_1 A'320230044.279.60.2399% S_3	A'	2334	2189	0.7	31.1	0.14	$94\% S_2$
A' 3202 3004 4.2 79.6 0.23 99% S_3	A'	2462	2310	0.1	25.3	0.73	$99\% S_1$
	A'	3202	3004	4.2	79.6	0.23	$99\% S_3$

The scale factors are $(0.88)^{1/2}$ for CH and CD stretches above 2000 cm⁻¹, $(0.90)^{1/2}$ for bendings between 200 and 2000 cm⁻¹ and 1.00 for modes below 200 cm⁻¹

molecule [23]. Furthermore, the π -electron donor groups NH₂, N(CH₃)₂, OH and OCH₃ were predicted to transfer the charges through the central transmission group –CH = CH–, which is very effective in modifying the NO bond length [23].

In our previous study, a comprehensive analysis of the vibrational spectra of nitrosoethylenes was provided, calculated at the DFT level [31]. At present, from energy optimization at MP2/ $6-311+G^{**}$ level, chlorinated nitrosoethylenes were found to exist predominantly in

the *trans* conformation with high *trans* to *cis* rotational barriers of more than 9 kcal mol^{-1} . Furthermore, the *cis* forms were predicted to be about 5 kcal mol^{-1} higher in energy than the *trans* conformers of the molecules and thus, do not need to be included in the spectra calculations.

The vibrational wavenumbers of *trans* nitrosoethylene CH_2 -CH-N=O are given in Table 6 together with those of the d_1 -deuterated and d_2 -deuterated species. Then the potential energy distributions among the

Fig. 3 Vibrational infrared spectra of *trans* d_0 -nitrosoethylene (*upper panel*), *trans* d_1 -nitrosoethylene (*centre panel*) and *trans* d_2 -nitrosoethylene (*lower panel*) using scaled wavenumbers from the MP2/6-311+G** calculations

symmetry coordinates of the normal modes were calculated for the three d_0 -species, d_1 -species, and d_2 -species of the parent (Table 6). The vibrational modes that are associated with the vinyl group were compared with the corresponding ones observed for propenoyl fluoride [35]. The vibrational assignments of most of the fundamental vibrations of nitrosoethylene were straightforward based on the calculated PED as shown in Table 6. Several of the calculated modes, especially those associated with the bending ones, were predicted to mix with other modes and could not be assigned based only on calculated PED values. It is important to repeat these calculations at the MP2 level in the present study, because we feel that scaled MP2 wavenumbers are more reliable than the DFT ones published earlier [31], because the latter cannot be scaled.

Fig. 4 Vibrational Raman spectra of *trans* d_0 -nitrosoethylene (*upper panel*), *trans* d_1 -nitrosoethylene (*centre panel*) and *trans* d_2 -nitrosoethylene (*lower panel*) using scaled wavenumbers from the MP2/6-311+G** calculations

There are three stretches that are associated with the C–H modes (S_1 , S_2 , and S_3) of the vinyl CH₂=CH group and all were predicted to have little mixing with other vibrations (Table 6). These three modes were calculated at 3099, 3008, and 2991 cm⁻¹ in the spectrum of d_0 , at 3098, 2996, and 2229 cm⁻¹ in the spectrum of d_1 , and at 3004, 2310, and 2189 cm⁻¹ in the spectrum of d_2 nitrosoethylene (Table 6), respectively. The C=C stretching mode was calculated at 1579 cm⁻¹ (PED of 68% S_5) in the spectrum of d_0 -nitrosoethylene (Table 6), considerably mixed with S_7 (19% PED). This mode was observed at 1630 cm⁻¹ in the Raman spectra of the *trans* conformation of propenoyl fluoride [35].

The C-N stretching mode was calculated to mix considerably with other vibrations of the molecule (Table 6). The N=O stretch was calculated at 1415 cm⁻¹ (PED of 94% S_4) with high infrared intensity in the spectrum of nitrosoethylene (Fig. 3). Several of the bending modes in the spectra of the molecule were

Table 7 Symmetry species, s_i , MP2 wavenumbers, k_i in cm⁻¹, scaled wavenumbers, k'_i in cm⁻¹, infrared intensities, I_i in km mol⁻¹, Raman activities, S_i in Å⁴ amu⁻¹, depolarization ratios ρ_i and distribution of the potential energy of a normal mode in the

symmetry coordinates, PED (only values larger than 10% are given), for the normal modes i in monochloro-nitrosoethylene and dichloro-nitrosoethylene

Si	$k_{ m i}$	k'i	I_{i}	S_{I}	$\rho_{\rm I}$	PED
Monoch	loro-nitrosoeth	ylene (X=H, Y	Z = Cl			
A"	158	158	1.2	0.3	0.75	$89\% S_{15}$
A'	255	241	0.5	3.5	0.67	$50\% S_9, 24\% S_{11}, 21\% S_{10}$
A'	374	355	0.1	3.4	0.72	$57\% S_{10}, 32\% S_{9}$
A"	474	450	0.3	0.8	0.75	$96\% S_{12}$
A'	657	623	25.2	9.7	0.12	$46\% S_3, 32\% S_6$
A'	697	661	10.3	5.3	0.55	$55\% S_{11}, 26\% S_3$
A"	724	686	1.8	0.7	0.75	$100\% S_{14}$
A'	889	843	42.1	4.6	0.35	$42\% S_8, 40\% S_6, 11\% S_{11}$
A"	914	867	42.6	2.5	0.75	$100\% S_{13}$
A'	1180	1120	90.4	16.2	0.42	$49\% S_8, 23\% S_6, 12\% S_{10}$
A'	1410	1338	24.3	29.3	0.39	$80\% S_7, 13\% S_5$
A'	1504	1426	72.7	35.3	0.44	$92\% S_4$
A'	1653	1568	37.5	35.5	0.13	$71\% S_5, 17\% S_7$
A'	3203	3005	1.9	98.7	0.10	$99\% S_2$
A'	3319	3113	1.0	55.0	0.75	$100\% \ \bar{S}_1$
Dichloro	o-nitro soethyle	ne (X = Cl, Y =	H)			
A"	137	137	0.8	0.0	0.75	$68\% S_{15}, 12\% S_{12}, 10\% S_{13}$
A'	164	164	3.3	2.1	0.71	$47\% S_8, 46\% S_{10}$
A"	234	226	5.7	1.3	0.75	$85\% S_{14}, 15\% S_{15}$
A'	292	277	0.2	4.4	0.66	$86\% S_7$
A'	426	404	8.4	1.2	0.51	$24\% S_{10}, 23\% S_8, 22\% S_2, 13\% S_1, 13\% S_6$
A"	486	461	4.1	0.6	0.75	$90\% S_{13}$
A'	491	466	1.4	5.9	0.08	$43\% S_{11}, 30\% S_2, 12\% S_8$
A'	759	720	37.0	3.7	0.59	$36\% S_2, 29\% S_{11}, 11\% S_1$
A"	844	801	18.1	1.6	0.75	$100\% S_{12}$
A'	965	916	103.8	2.2	0.49	$69\% S_1, 17\% S_6$
A'	1124	1066	273.5	102.6	0.36	$60\% S_6, 12\% S_{11}$
A'	1285	1220	35.8	11.0	0.29	$77\% S_9$
A'	1443	1369	71.2	119.0	0.32	86% S ₄
A'	1609	1527	128.4	78.0	0.20	$74\% S_5$
A'	3217	3018	2.0	72.9	0.20	$100\% S_3$

The scale factors are $(0.88)^{1/2}$ for stretches above 2000 cm⁻¹, $(0.90)^{1/2}$ for bendings between 200 and 2000 cm⁻¹ and 1.00 for modes below 200 cm⁻¹

calculated to have a small degree of mixing with other vibrations. For example, the CH_2 scissoring, CH, and C = C-N bending modes could be assigned with confidence on the basis of their PED values (Table 6) with, however, some small degree of mixing with other symmetry coordinates. The lowest vibrational torsional mode in the spectra of nitrosoethylene was calculated to have a non-negligible but small degree of mixing, as shown in Table 6.

Let us turn now to the vibrational spectra of the chlorinated derivatives. Their wavenumbers are given in Table 7 and their infrared and Raman spectra plots are shown in Figs. 5 (mono-ClNE) and 6 (di-ClNE).

The table shows, that in the mono-chloro derivative the lowest mode is pure asymmetric torsion at 158 cm⁻¹. The next higher band at 242 cm⁻¹ appears to be substantially mixed, containing 50% C–Cl bend, 24% CNO bend and 21% C=C–N bend. The latter is contained to 57% in the next mode at 355 cm⁻¹ mixed with 32% C– Cl bend. Then at 450 cm⁻¹ we find purely the C–Cl wag (96% PED). At 623 and 661 cm⁻¹ the C–Cl stretch appears, in the former (46%) mixed with 32% C–N stretch, while in the latter (26%) it is mixed with 55% CNO bend. The line at 686 cm⁻¹ is pure CH₂ deformation II. While the next higher one is again mixed, the CH₂ deformation I appears purely at 867 cm⁻¹. At 1426 cm⁻¹ the pure NO stretch shows up, then at 1526 cm⁻¹ a mixture of 71% C=C stretch with 17% CH₂ scissor motion follows. All these lines, also the highly mixed ones at lower wavenumbers, show a high intensity both in the Raman and in the infrared spectrum. The two CH₂ stretches appear at 3005 and 3113 cm⁻¹ with a high intensity in the Raman spectrum, but a low-one in the infrared one.

In the case of the di-chloro compound, the lowest wavenumber at 137 cm⁻¹ is not the pure torsion alone, but 68% of the torsion is mixed with 12% C–H wag and 10% CCl₂ deformation I. At 164 cm⁻¹ CCl₂ wag appears in an equal mix with C=C–N bend, while at 226 cm⁻¹ CCl₂ deformation II (85%) is mixed again with the asymmetric torsion (15%). The CCl₂ scissor appears pure (86%) at 277 cm⁻¹. The following band of relatively low intensity is a highly mixed one, followed by CCl₂ deformation I pure (90%). Then two mixed bands followed by

Fig. 5 Vibrational Raman (*upper panel*) and infrared (*lower panel*) spectra of *trans* monochloro-nitrosoethylene using scaled wave-numbers from the $MP2/6-311+G^{**}$ calculations

Fig. 6 Vibrational Raman (*upper panel*) and infrared (*lower panel*) spectra of *trans* dichloro-nitrosoethylene using scaled wavenumbers from the $MP2/6-311+G^{**}$ calculations

pure CH wag show up. In this region there are appreciable infrared transmittances, while the Raman intensities are low. The next bands are of higher intensity in both spectra and considerably mixed then follow some pure motions, i.e. 77% CH bend at 1220 cm⁻¹, 86% NO stretch at 1369 cm⁻¹, 74% C=C stretch at 1527 cm⁻¹, and finally 100% CH stretch at 3018 cm⁻¹.

A comparison of the predicted spectra with experiment would be highly desirable, but we were not able to find experimental spectra of these highly reactive molecules in the literature. Finally it turned out that most of the effects of an NO group and clorine substitution of potential curves and on spectra are due to electronegativity, besides some steric influences.

Acknowledgements The authors gratefully acknowledge the support of this work by King Fahd University of Petroleum and Minerals.

References

- Ohwada T, Itai A, Ohta T, Shudo K (1987) J Am Chem Soc 109:7036–7041
- Kaberdin RV, Potkin V, Oldekop YA (1991) Zhurn Org Khim 27:56–63
- Kaberdin RV, Nikolaeva EE, Oldekop YA (1990) Zhurn Org Khim 26:2223–2224
- 4. Jursic BS, Zdravkovski Z (1995) J Org Chem 60:3163-3168
- Sakaizumi T, Usami A, Satoh H, Ohashi O, Yamaguchi I (1994) J Mol Spectrosc 164:536–549
- Sakaizumi T, Nishikawa M, Ohashi O (1995) J Mol Spectrosc 171:518–524
- 7. Katagiri N, Okada M, Kaneko C (1996) Tetrahedron Lett 46:1801–1804
- 8. Bouchoux G, Salpin J (1996) J Phys Chem 100:16555-16560
- Matsui H, Zückerman EJ, Katagiri N, Kaeko C, Ham S, Birnev DM (1997) J Phys Chem A 101:3936–3941
- Takezaki M, Hirota N, Terazima M, Sato H, Nakajima T, Kato TS (1997) J Phys Chem A 101:5190–5195
- Park J, Dyakov IV, Mebel AM, Lin MC (1997) J Phys Chem A 101:6043–6047
- Jimenez-Vazquez HA, Ochoa ME, Zepeda G, Modelli A, Jones D, Mendoza JA, Tamariz J (1997) J Phys Chem A 101:10082– 10089
- Ahmad SR, Foster VG (1997) J Phys D: Appl Phys 30:2677– 2685
- Cheng J, Xian M, Wang K, Zhu X, Yin Z, Wang PG (1998) J Am Chem Soc 120:10266–10267
- Arulmozhiraja S, Kolandaivel P (1998) J Mol Struct (Theochem) 429:165–173
- Gindulyte A, Massa L, Huang LL, Karle J (1999) J Phys Chem 103:11040–11044
- Gindulyte A, Massa L, Huang LL, Karle J (1999) J Phys Chem 103:11045–11051
- 18. Skokov S, Wheeler RA (1999) J Phys Chem A 103:4261-4269
- 19. Shin WS, Padias AB, Hall HK (2001) J Polym Sc A 39:1886-1891
- Badawi HM, Förner W (2001) J Mol Struct (Theochem) 536:203–212
- 21. Badawi HM, Förner W (2001) J Mol Struct (Theochem) 542:7– 20
- Badawi HM, El-Rayyes AA (2002) J Mol Struct (Theochem) 588:17–27
- 23. Senthilkumar K, Kolandaivel P (2002) Comp Chem 26:207-221
- Stigliani WM, Laurie VW, Li JC (1975) J Chem Phys 62:1890– 1892

- 25. Yum TY, Eggers DF (1979) J Phys Chem 83:501-506
- 26. Craig NC, Fleming GF, Pranata DJ (1985) J Phys Chem 89:100-105
- 27. Staley SW, Norden TD, Su CF, Rall M, Harmony MD (1987) J Am Chem Soc 109:2880-2884
- 28. Cheer CJ, Bernstein D, Greenberg A, Lyu PC (1988) J Am Chem Soc 110:226-230
- 29. Burk P, Luis J, Koppel IA (1996) J Phys Chem 100:6992-6997
- 30. Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MR, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Frakas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman

JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DT, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong W, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian Inc, Pittsburgh, PA

- Badawi HM, Förner W (2004) J Mol Struct 677:153–160
 Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, NY, USA
- 33. Förner W, Badawi HM (2001) J Mol Model 7:288-305
- 34. Chantry GW (1971) In: Anderson A (ed) The Raman effect, vol 1, Chapter 2. Marcel Dekker, NY, USA
- 35. Durig JR, Berry RJ, Groner P (1987) J Chem Phys 87:6303-6322